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ABSTRACT

The spherical means of the solutions of a linear partial differential

equation Lu = f in a conical region are studied. The conical region is

bounded by a surface generated by curvilinear surfaces. The spherical mean

is the average of u over a constant ( surface. The conditions on the linear

differential operator, L, and on the orthogonal coordinates (, r, C are

established so that the spherical mean of the solution subjected to the

appropriate boundary and initial conditions can be determined directly as a

c-roblem with only one space variable. Conditions are then established so

that the spherical mean of the solution in one conical region will be pro-

portional to that of a known soluticn in another conical region. Applica-

tions to various problems of mathematical physics and their physical in-

terpretations are presented.
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1. Introduction

In a study of the solutions of the diffraction of an incident wave by a

cone of solid angle 0 with zero normal derivative thereon it was shown [1]

that the resultant value at the vertex of the cone is equal to 4r/(4r-0)

times the value of the incident wave at the same point in absence of the cone.

This relationship was obtained by rederiving Kirchhoff's formula [2] for the

wave equation from Green's formula, for the vertex of a cone. Corresponding

results can be obtained for the Poisson equation and the diffusion equation.

Although the results are different for different differential equations, they

can be summarized in a unified statement:

"The value at the vertex of the cone is equal to that of an extended

three-dimensional problem without the cone divided by the ratio of the local

solid angles of the domains i.e., by the ratio (4T-O)/(4T). In the extended

problem the inhomogeneous term and the initial data are assigned to be zero

in the interior of the cone. In case that the normal derivative on the

surface of the cone is not zero, the prescribed data should be redistributed

and added to the inhomogeneous term for the extended problem."

This unified statement suggests that it may be proved directly from

certain properties common to the differential operators of those equations

without making use of the Green's theorem and Green's function for each

differential equation individually. Such a general approach can be used

when the value at the vertex is identified as the limit of the mean value

over the local spherical cap exterior to the cone. Therefore, the original

plan of presenting the special analyses for each of these differential

equations separately is abundoned in favor of the present general approach.
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In the next section conditions on the linear differential operator L and

the curvilinear orthogonal coordinates , , ( are established so that the

"spherical" mean of the solution of Lu = f in a domain D subjected to

appropriate boundary and initial conditions can be determined directly as

the solution of a problem with only one space variable. The domain D is

bounded by a "conical" surface S generated by the C-coordinate lines and by
c

two truncating constant g-surfaces S1 and S2 . The "spherical" mean u(g,t) is

defined as the mean value of the solution u over a constant C-surface in the

closed region D. Conditions are then established so that the "spherical"

mean of the solution in D will be proportional to that of a known solution in

a different region D. For the special case that the surface S1 at =

degenerates to a point, the vertex of the "cone", the relationship for the

spherical means is also valid for the value u at the vertex. These state-

ments are the essence of the Theorems I and II and the two corollaries in

Section 2. The aforementioned unified statement on the value at the vertex

of a cone is included as a special case of Corrollary 2.

The direct determination of the "spherical" mean u(g,t) provides some

important information about the solution and also provides a test of the

accuracy of the numerical approximation to u itself (see, e.g. [3], [4].)

Sections 3 to 6 present the application of the theorems to various

physical problems. They can be read independently.

Section 2 applies the theorems to biharmonic equations governing the

deflection of a circular sector plate subjected to a stationary or moving

load. The mean deflections and in particular the deflection at the tip are

identified as the symmetric deflections of a circular plate with equivalent

loads.
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In section 4, the theorems are applied to unsteady three-dimensional

diffusion problems in a wedge and in a domain bounded by two cones

with a common vertex. The demonstrations of how to obtain results directly

from the theorems due to the particular geometries of the domains are, of

course, not restricted only to the diffusion problems. The third example

shows their applications to the diffusion of pollutants in a moving medium.

In section 5, the theorems are applied to the diffraction of an incident wave

by a cone of solid angle 0. The spherical integral of the resultant wave is

equal to that of the incident wave without the cone. The value at the vertex

is equal to the value of the incident wave intensified by the factor 4r/(4-O)

as stated in Theorem III. If the incident wave is reflected and diffracted

at least by part of the surface of the cone for all time, the primary wave

which is known say for t < 0 is composed of the incident wave and those

reflected and diffracted waves. The spherical integral of the resultant wave

for t > 0 can again be related directly to that of the primary wave as stated

in Theorem IV. Their applications are demonstrated by three examples. They

also illustrate how to apply the theorem to bodies which are composed of cones

of finite length by making use of the finite speed of propagation.

In section 6, the theorems are applied to the reduced wave equation.

In particular, for the diffraction of a plane wave or a cylindrical wave

by a cone of infinite length, the Sommerfeld radiation conditions are not

applicable. These theorems provide a necessary condition for the resultant

wave.

3
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2. Direct Determinability of the Mean-value Over a Curvilinear Coordinate

Surface

Let u(x,y,z,t) be the solution of a linear partial differential equation

(2.1) Lu = f(x,y,z,t) in D for t > 0

where x,y, and z are the Cartesian coordinates and t denotes the time variable

Let (, 1, ( be a set of curvilinear orthogonal coordinates. The element of

arc length is given by

2 2 2 2 2 2 2 2 2(2.2) dx + dy + dz = 2dg + 0 d 2 + y d2

The domain D is bounded by two constant g-surfaces S1 and S2 and a cylindrical

surface S generated by -coordinate lines with j2 > (see Fig. 1). In

the g, i, C space, the domain D is a right cylinder parallel to the g-axis

with base area B in the 1-C plane. The initial and boundary conditions will

depend on the operator L. It will be assumed henceforth that these conditions

and Eq. (2.1) form a well posed problem. To be more specific, Eq. (2.1) is

assumed to be second order in g and the standard boundary conditions of the

third type [5] will be imposed, i.e.,

(2.3) a.u + (-l) j b u = h. (7,C,t) on S. for j = 1,2,

where a. and b. are non-negative functions of t and a. + b is greater thanj J J

zero. The required boundary condition on Sc will be specified later in
cc

Theorem I. The initial conditions at t = 0 are
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(2.4) q
k k (x,y,z) in D for k = 0,1...K. l

where K is the order of the differential operator L with respect to t. It

will be assumed, throughout this paper, that all the given delta f, h. and qk3k
are piece-wise continuous in their domains of definition, that a., , y process

continuous first derivatives and that the solution u has continuous first

derivative in the closed region D i.e., D and its boundary.

The generalizations of the initial conditions (2.4) and of the boundary
conditions (2 .3)on S when Eq. (2.1) is of any order in ( will be discussedJ

after Theorem I.

The "spherical" mean v(g,t) of a function v(1,7,C,t) is defined as the

mean value of v over the constant C surface S in D, i.e.,

v(,t) = v dS/ dS

S
~s

(2.5) = 55 v OydrdC / ,, $ydndC
B B

Since the "spherical" mean involves only one space variable, it would be

of interest to know under what conditions on the operator L and the curvilinear

coordinates and with what type of boundary conditions on the surface S will it
c

be possible to determine -he "spherical" mean u( ,t) directly prior to the

solution u(g,i,C,t) itself.

The linear differential operator L and the curvilinear coordinates are

assumed to fulfill the following four conditions:
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(2.6) (1) L = L1 + L2

where L1 involves only ( and t.

(ii) L2 u can be written as the divergence of a vector A in a

constant ( surfaces, i.e.,

(2.7) L u = div A= (ayA r)+ -- (caA]
2 -- 9 2)71 11 ac(

where A and A are linear combinations of u and its partial derivatives and are

identified as the n- and C-components of the vector A with A = 0.

(iii) The operator L1 commutes with the averaging operator ()

defined by Eq. (2.5), i.e.,

(2.8) ((2.8) (L1u) = L1u

When L1 involves differentiation with respect to g, the dependence of the area

element of the surface S on C should be separable, i.e.

(2.9) Y= P( ) U(n,0)

(iv) The distance between two constant g-surfaces is a

constant, i.e.,

(2.10) a. = a(g).

On the surface Sc, the required boundary condition is to prescribe the

normal component of A i.e.
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(2.11) A = g(C,a,t) on S

where a is the arc length along the intersection of S and S . If there are
Sc

more than one boundary condition on S in the well-posed problem Eq. (2.11)C

has to be a linear combination of them.

The divergence theorem is applied to the vector function A for the

volume AD in D bounded by two constant g surfaces S and S + Ag. By

utilizing Eq. (2.1), conditions i) and ii) and the boundary condition of

Eq. (2.11), the result is

f a y (LI u - f) drdC = A a g (g,a)da

s as

Due to condition (iv), a(g) can be moved outside the integral. After dividing

the equation by the volume AD, the equation becomes

i (L1u) SydndC

(2.12) = f(g,t) + (c,t)

Jf SyddC
S

where

(2.13) g (Ct) g(g,a-Jt)da / jj OydndC
as (s st

The leftside of Eq. (2.12) is the "spherical" mean of L1 u which is equal to

L1 u on account of condition (iii). Equation (2.12) then becomes the

differential equation for u. The boundary conditions and the initial conditions
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for u are supplied by averaging Eqs. (2.3) and (2.4). These results are

summarized in the following theorem.

Theorem I

When the differential operator L and the orthogonal curvilinear coordinates

fulfill conditions (i) to (iv), the "spherical" mean u(g,t) of the solution of

Lu = f in D subjected to the boundary conditions of Eq. (2.3) and (2.11) and

the initial condition of Eq. (2.4) is governed by the following equations:

(2.14) D.E. L1u(F,t) = f(g,t) + g(F,t) for < ( < (2 and t > 0,

(2.15) B.C. a.u + bu (-l)J = h.(t) at 9 = C. for j = 1,2,

(2.16) I.C.
at k k ()at t = 0 for 1 < 2 and k = 0,1,...K-l.

From physical point of view, the operations leading to Eq. (2.14) is

equivalent to setting up the "conservation" equation for a thin shell in D

between surfaces S 9 and S with thickness aA!. If f is interpreted as the

intensity of a spatial source distribution in D and g as a surface distribu-

tion of sources over Sc, the inhomogeneous term in Eq. (2.14) for the

"spherical " mean represents a spatial source distribution independent of

and ( with intensity equal to the "spherical" mean of the spatial distribu-

tion f plus a redistribution of the source on Sc with constant ( uniformly

over the surface S .
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It should be noted that in Theorem I, the operators on u in the initial

conditions and in the boundary conditions at =l, and 2 are the same as

those for u because these operators are independent of 1 and C. It is evident

that if the operators on u in Eq. (2.4) are generalized to be any linear

operator independent of n and C, then the same operators will appear in the

initial conditions on u. Similarly, the boundary conditions (2.3) on Sl and

S2 can be generalized with total number of conditions equal to the order of

Eq. (2.1) in g, provided that those boundary operators on u are linear and

independent of 7 and (. The same operators will again be applied to u in its

boundary conditions on = , and 92 in Theorem I.

The geometry of the surface Sc or that of the base area B in the ?-C

plane appears implicitly in the definition of the inhomogeneous terms of

Eqs. (2.14) and (2.16) and has no effect on how to construct the solution u of

those equations. The solution u will not be changed if there is an inter-

change of the surface source distribution g with the spatial distribution f

so long as the sum f + g remains unchanged. In particular, all the surface

source g can be replaced by an increament of f in D by the amount g with u

remaining the same. In physical problems. the inhomogeneous term f can contain

point sources in D, therefore, the surface source distribution can be absorbed

in f directly. In this respect, the discussions can be simplified by imposing

a homogeneous boundary condition on Sc, i.e.

(2.17) A = 0
n

There are cases that u ( ,r,C,t) which is the solution of the same set of
S

equations for u but in a different domain D , is given or can be obtained
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easily. The "spherical" mean u(C,t) can be computed directly from u by the

definition of Eq. (2.5). It is therefore of interest to relate the "spherical"

*
mean in D to that in D.

* * *
Domain D is also bounded by two constant C surfaces S and S2 with g=g1

and 92 respectively and by a cylindrical surface generated by g-coordinate

lines with C2 > g > Ci with base area B* in the 7-C plane.

From condition iii) on the curvilinear coordinates, the ratio of the area

of constant-C surface in D* to that in D becomes

(2.18) Jffydid / /ydrjdC = ff p(nC)dndC p( ,C)dndC = A
S B B*

where A is a constant.

It will be assumed that the supports in inhomogeneous terms in the

differential equation and in the initial conditions lie in D n D*, and the

supports of the inhomogeneous terms in the boundary conditions on S. lie in
j

B n B*. The solution u* in the domain D* is then defined as the associated

solution of u in D if they fulfill the same differential equation, the same

boundary conditions on S 1 and S2, and the same initial conditions, and the

*
homogeneous condition A = 0 on S for u and A = 0 on S * for u* where A* isn c n c

the vector A with u replaced by u*. The last condition implies either

g = g* = 0 or that the surface source distribution g has been absorbed in f.

-**
Let v designate the "spherical" mean of v over a constant g surface in

*
D . The mean values of the inhomogeneous terms in the differential equations

* -
initial conditions and boundary conditions on S. for u will be A times the

values for u, e.g.,
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(2.19) f* = A f.

By theorem I, u* obeys the same equations as u with the exception that all

the inhomogeneous terms change by a factor A, therefore,

(2.20) u* (C,t) = A u(O,t) or u(C,t) =u*(g,t)/A

This result is stated as follows:

Theorem II

The "spherical" mean u( ,t) of the solution u in D is equal to "spherical"

mean u*(g,t) of the associated solution u* in D* divided by the ratio of the

area of the constant C surface in D to that in D*.

By using the definition of Eq. (2.5), Eq. (2.20) becomes

(2.21) ff u(g, ,C,t)dS = u(g,7,C,t)dS

s s*

This relationship restated in the following Corollary is useful when one of

the areas, say that of S*, is not finite.

Corollary I

The integral of u(g,f,C,t) over a constant C-surface in D is equal to

that of its associated solution u* in D*.

A) Admissible Orthogonal Coordinates

Conditions iii) and iv) i.e. Eqs. (2.9 and 2.10), impose some

restrictions on the curvilinear orthogonal coordinates. It is shown in an

NYU Report [6] that Eq.(2.10) requires the C-coordinate lines to be straight
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lines then the unit tangent vector 4 is independent of g. When g is identified

as the arc length, a(g) equals to 1. It is then shown in [6] that the constant

C-surfaces and the orthogonal coordinates, which are consistent with Eq. (2.9),

have to be one of the following three types:

a) C is independent of n and C. The constant C surfaces are parallel

planes say normal to x-axis. The variable C can be identified as x while

-n, can be identified as y and z or a pair of orthogonal coordinates in the

y-z plane. The domain D is a right cylinder parallel to x-axis (see Fig. 2a).

b) C is dependent only on i and C. The constant g surfaces are coaxial

circular cylindrical surfaces. If the axis is identified as the z-axis. The

orthogonal coordinates can be identified as the cylindrical coordinates (p,e,z)

respectively. The domain is bounded by the cylindrical surfaces p = g, and

P = 92 and the "conical" surface S which can be defined as S(z,G) = 0,

(see Fig. 2b).

c) C depends on both 7 and C. The variable g is identified as the

radial distance r to the center and i and C can be identified as the spherical

angles e and cp respectively or as two orthogonal coordinates on the spherical

surface. The domain D is a cone truncated by spherical surfaces of radii

and 92. (see Fig. 2c).

Under type c, the area S of a spherical cap in D is r2 0 where 0 isr c c

the solid angle of the cone. When g, = 0 the spherical cap SI at r = 91

degenerates to the vertex of the cone and the spherical mean value u(0,t)

becomes the value at the vertex of the cone. Theorem I will therefore relate

the value at the vertex of the cone D to that at the center of a spherically

symmetric problem without the conical surface Sc, i.e.,

12
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(2.22) u(r = 0, e,C,t) = u(0,t)

The boundary condition(s) at r = = 0 will be the specification of the

behavior of u and/or its derivatives with respect to r as required by the

order of Eq. (2.1) with respect to g. The same condition(s) will be imposed

on u at r =0.

When D* is another conical domain of solid angle *0 the ratio of thec

area of spherical cap S in D to that of S* in D* is
r r

* *
A = S / S =0 / 0*

r r c c

When the required boundary condition for u on Sc, Eq. (2.11), is

homogeneous, Theorem II yields that the spherical mean of the solution

* *
u(r,8,m,t) in D is equal to that of u in D divided by A which is the

ratio of the solid angles, i.e.,

(2.23) u (r,t) = u (r,t) / (0 /0c)
c c

At r = 0, the mean values u, u are the values of u and u* respectively at

the vertex. The following statement is now evident.

Corollary 2

The solution u at the vertex of a cone D with 0 < r < !2 are equal to

the associated solution u* at the vertex of cone D* divided by the ratio of

their solid angles.

For the special case that D* is the whole sphere, r < 12 with 0* = 4n,

the associated solution u* is a solution inside the sphere in absence of a
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conical surface. u* at the center of the sphere is related to the solution

u and the vertex of the cone D directly,

(2.24) u(r = 0,,,,t) = 4- u* (r = o,ec,,t)

c

This equation is equivalent to the statement in Section 1 which summarizes

the results obtained by the applications of Green's formulas and the

appropriate functions to several equations of mathematical physics.

It should be pointed out here that conditions for the direct deter-

mination of the spherical mean in Theorem I are not necessary. For example,

the operator L2 involving the variables. and C can be removed by means of

the Stokes Theorem if L 2u can be expressed as the g-component of the curl of

a vector. Details of the alternate approach can be found in [6]. They will

not be presented in this paper because in most physical problems, the

governing equations are usually derived from the conservation of certain

quantities and the representation of L2 u as the divergence of a surface

vector is usually expected.

In the next sub-section it will be shown that several equations of

mathematical physics fulfill the conditions stated in Theorem I.

B) Equations of Mathematical Physics

For many equations of mathematical physical, namely the Poisson equation,

the unsteady diffusion equations, the wave equation, etc., the differential

operator involving the space variables is the Laplacian operator, i.e.

(2.25) L = div grad + L t

where Lt involves differentiations with respect to time only.

t14
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To compare with the conditions on L, the vector A in Eq. (2. 7) can be

identified as the projection of grad u on the i-C surface, i.e.

(2.26) A = +
al Y ac

where 1 and ( are unit vectors along the l and C-coordinate lines respectively.

From the definition that Lu = L u + div A, the operator LI is [7]

L 1 + L

1 Cay a t

When the coordinates are admissible in the sense defined in the preceding

subsection L1 becomes

(2.27) L = L

It is clear that L1 involves only ( and t and the operator L defined by (2.25)

fulfills the four conditions required for the direct determination of the

"spherical" mean. The normal component of A on S is equal to the normal
- c

component of grad u. The required boundary condition on Sc, Eq. (2.11),

becomes

(2.28) D-u(2.28) = g (9,a,t) on S
an c

In the analysis of diffusion through a moving incompressible fluid, the

equations for the velocity field S is uncoupled from the equation for the

diffusion process. For a given velocity field, the operator L is of the

form
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(2.29) L = t + V

Lu can be rewritten as u t + V . [u - vu]. To be consistant with the conditions

for Theorem I, it is necessary that the c-component of the velocity is

independent of n and C and that (1 . n)u-(au/ n) is prescribed on the surface

S . The second condition is equivalent to the prescription of the flux of uc

through the surface S . For the special case that the surface S is a rigidc" c

wall, , n vanishes on S and the required boundary condition on Sc is the

prescription of au/3n i.e. again Eq. (2.28).

For biharmonic equations, say

(2.30) L = M + Lt

the vector A in Eq. (2.7) can be identified as

(2.31) A= 6 [ u + SL ( 2 )

+ 6 [ u + y L ( 2 u+ ac .¢ y Y2 6C

where L = 1 _ (V ). From the definition of Lu = Liu + div A, it can be

seen that the operator L 1 is equal to (L ) 2 + Lt and involves only t and g. The

required boundary condition on S in Theorem I becomesc

(2.32) An ~ u+n . L ( ) + n . y L ( ) = g (,,t)
n -bn (2(MC+

It is obvious that the operator L in general will not be invariant with

respect to a translation of the origin, see for example Eq. (2.29). However,

many of the operators do have this invariant property, e.g., Eq. (2.25) and (2.30),
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and then Theorem I can be used to yield the mean-value theorem for any interior

point and to develope solutions for initial value problems.

C) Connections with the Mean-Value Theorem and Initial Value Problems

In this subsection it is assumed that the operator L fulfills the conditions

in Theorem I and possesses the property of invariance with respect to a transla-

tion of the origin. Any interior point P. of D can be chosen as the origin

and Theorem I can be applied to determine directly the spherical mean u inside

a sphere S2 lying in D and centered at P . The spherical mean and in particular0

the value of u at Po . is related to the boundary data on S2 by solving a problem

with only one space variable. Thus a mean value theorem for Eq. (2.1) is

established. Of course the boundary conditions on the conical surface S will
c

not appear in this consideration.

For an initial value problem, the domain D is the whole space. Any point

Po can again be chosen as the origin and Theorem I will relate the solution at

Po to the initial data by solving directly the equation for the spherical mean.

Applications of spherical means to initial value problems in this respect can

be found in [5] and [8].

The theorems in this section and the examples in the following sections

deal with initial boundary-value problems. Additional examples can be found

in [6].

17



3_. The Biharmonic Equation

The biharmonic equation appears frequently in elasticity problems

namely in the plane stress or plane strain problems [9] and in the deflec-

tion of thin plates [10]. It is also the governing equation for a slow

viscous flow [11]. In this section u(r,O,t) will represent the deflection

of a thin circular sector plate in polar coordinates r,8. The governing

equation is

(3.1) AAu + a2u

The domain D is the circular sector of radius R and anglec, i.e., o <r< R

and - a/2 < 0 < (/2. For the two dimensional problem, eq. (2.31) reduces to

(3.2) A = - Au + 1- r a ( au
ae 3r DrT

= 9 AG=E A--e

Under theorem I, the two boundary conditions on Sc, i.e., on the
two straight edges 0 = ± a/2, should be sufficient to specify A0. As a

mathematical problem, A® can be specified as one boundary condition and

the mean solution will be independent of the other boundary condition.

The two boundary conditions to be imposed for the plate will

appear naturally in the formulation of the governing equations from the

variational principal [10]. The following terms appear in the line inte-

gral along the boundary

-Mn _u + (Qn - Mns )LA
an as

where Mn, Mns and Qn are the bending moment, torsional moment and shearing

force and n and s are arc lengths normal to and along the boundary respec-

tively. The line integral vanishes when one of the following four pairs
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Of boundarydata.are-prescribed: (i) u and au/an, (ii) u and Mn , (iii) Mn

and (Qn - 3Mns/aS), (iv) au/an and (Qn - 3Mns/@S). When the boundary condi-

tions are homogeneous, the first three pairs are known as built-in, simple

supported and free edge conditions. The fourth pair will be called rotation-

constrained edge conditions, e.g., the edge is reinforced by a bar with

torsional rigidity much larger than its flexural rigidity to constrain the

deflection of the plate.

Along the straight edges of the sector platee =±a/2,only the

fourth pair of the edge conditions will yield the data on A0. They are

(3.3). u0 = 0 and

(3.4) 1 a (Au) + (1 - v) a2  (1 au) = 0
r 8e ar2 r ao

for 0 < r < R where v denote Poisson ratio in this section. From eq. (3.3),

eq. (3.4) reduces to a(Au)/30 = 0. From the definition of A0  in eq. (3.2)

it is clear that the combination of egs. (3.3) and (3.4) yields

(3.5) A = 0

on e = ± a/2. The two boundary conditions at the tip of the plate, r = 0, are

(3.6) u is finite and

(3.7) lim r [ 1 a r au) 0
r o a r r ar

Equation (3.7) implies there is no concentrated load at the tip, otherwise

the limit will be non zero. The boundary conditions along the circular

arc r = R can be,

(3.8) u = 0 and au/ar = 0 for a built-in edge ,
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(3.9) u = 0 and .2u/ar + (v/r) Du/ar = 0 for a simply supported

edge for je1 < a/2. The boundary conditions are at r = 0 and r = R do not

involve 0, therefore, Theorem I can be applied to the sector plate to deter-

mine the mean v (r,t) directly and in particular the value at the tip

u(O,e,t) which is u (0,t). The mean r in this two dimensional problem

is defined as

a/ 2

(3.10) Ur (r,t) = .f u (r,e, t) do/a
"a/2

The following two examples will deal with the static and unsteady problems

respectively.

Example 1. Deflection of a sector plate due to a stationary concentrated

load. For a concentrated load P applied at a point(ro, o)in D the inhomo-

genous term f in eq. (3.1) becomes

(3.11) f = (P/I) 6(r-ro) 6 (o- O)/r

where I is the flexural rigidity of the plate. With a built-in edge along

the circular arc (eq. 3.8) and rotation-constrained edges along the straight

edge (eqs. 3.3, 3.4), the mean deflection I (r) is governed by the equation

(3.12) (r d-- r dr2_ = (P/I) 6(r-ro) /(ra)
(3.12) d dr

The boundary conditions at r = 0 and r = R are given by eqs. (3.6), (3.7)

and (3.8) with u replaced . The solution is

22

(3.13) u (r) = P {(r2+ ro2 ) logro + (R+ r2 ) (I ro 2)/2
R R

+[ro0 - r 2 ) + (r 0
2 + r2 ) log (r/ro)] H(r - ro)j

0

where H is the Heaviside unit step function. The deflection at the tip

of the sector plate is
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(3.14) u(O,e) = u (0) = P [ro 2 log ro + (R2 - ro0 2 ) /2]
4al IT-

The mean deflection is the same as the symmetric deflection [10]

of a circular plate with built-in edge at r = R and a uniformly distributed

Ioad along a concentric circle of radius ro with total strength P(2r/a).

Example 2. Deflection of a sector plate due to a moving load

For a concentrated mvoing load of strength P, the inhomo-

geneous term f (r,t) is again given by eq. (3.11), however, ro(t) and

Go (t) are now given functions of t describing the motion of the load.

If the boundary conditions on the sector plate are the same as those

in example 1, the mean deflection u (r,t) is governed by the equation

(3.15) (ra r  a 2 U + a2  r = p 6[r - ro (t)]/ (ra)(rar r Ttr- IT

The boundary conditions atr = 0 and r = R are eqs. (3.6), (3.7) and.

(3.8) with u replaced by V. If the initial condition for u is u = ut = 0

at t = 0, then the same conditions hold for U, i.e.

(3.16) i (r,0) = ut (r,0) = 0

It should be noted that eq. (3.15) does not involve eo (t). Hence, the

mean deflection f (r,t) is independent of the circumferential movement of

the load and remains the same if the load P moving along any radial line

with instantaneous position r (t). F (r,t) is equal to the symmetric

deflection of a circular plate with built-in edge at r = R, with same

initial conditions and subjected to a load of total strength P (2rw/a)

uniformly distributed along the circle r = ro (t). The solution for

the symmetric deflection can be constructed by making use of the eigen-

functions for the symmetric modes given in[12]; Procedures for the con-

struction of the synmmnetric unsteady solution are described in [13] and [14].



4. The Unsteady Diffusion Equation

Tf u(x,y,z,t) represents the temperature variation in

a stationary medium or the mass fraction of species in a diffusion

problem, u obeys the simple diffusion equation

(4.1) Lu = Au - C- 2 u = f(x,y,z,t) in D for t > 0.
t

where C2 the diffusivity constant. In addition to the boundary

conditions of eqs.(2.3) and (2.11), there is one initial condi-

tion,

(4.2) u(x,y,z,0) = qo(x,y,z) in D

Two examples are presented to illustrate how to select

the curvilinear coordinates for a given domain and how to apply

the Theorems and corollaries. These suggestions, which rely on

the geometry.of the domain, are also applicable to other problems

of mathematical physics. Of course, the final explicit formulas

will be different for different governing equations. The first

example illustrates the use of Theorem II to obtain explicit

solutions along the edge of a wedge, and those for the planar,

the cylindrical and the spherical integrals in the wedge. The

second example shows the use of Theorem II for the construction

of the spherical mean in a domain bounded by two cones with a

common vertex. The third example shows how to apply Theorem I

to study the diffusion of pollutants in a moving medium and in

particular to obtain directly the total flux of pollutants going

upstream.
Example 1. Three dimensional heat transfer problem in a wedge

Figure 3 shows that the domain D is a wedge with angle
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U. The edge is chosen as the z-axis. One face of the edge is the

x-z plane (€=0). Due to the method of superposition and the

Duhamel's principal, it suffices to consider the simple case

of homogeneous equation and boundary data while the initial data

is a point source located at a point P(x ,y , 0) with strength Q,
1

i.e., f = 0, g = 0 and

(4.3) qQ (x,y,z) = Q 6(x-x , y-y ,z)

with x = p cos 4 , y = p sin , p >0 and 0 < < .

1 1 1 1 1 1 1

In absence of the wedge, the solution u* of the homo-

geneous heat conduction equation in the whole space under the

initial condition of eq.(4.3) is [ 15]

(4.4) u (x,y,z,t) = Q(47tC2t)- 31/ 2 exp{-r 2 /(4C 2 t)}
1

where r is the distance from (x,y,z) to the location of the
1

source.

In term of cylindrical coordinates p,o, and z, z can

be identified as the E coordinate and the planar integral of the

solution u in the wedges at constant z is equal to that of u*

in the whole space by Corollary 1, i.e.

I (z,t) = pdp f dO u(p,0,z,t)
P 0

= dxf dy u*(x,y,z,t)
-o -0

(4.5) = Q(47rCt) - 1/2 exp[-z 2 /(4C 2 t)]

If now p is identified as (. A constant E-surface is
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a cylindrical surface with radius p. Corollary 1 gives

immediately the cylindrical surface integral of u, i.e., [ 7]

00

I (p,t) f dz f pdp u(p, ,z,t)
C -0 0

21

- 0 0

= / dz J pd¢ u*(P cos €, P sin #,zzt)

= Q p(2 C 2 t)-1 I 0 [pp /(2C 2 t)] exp{-(p 2

(4.6) + p2 )4C 2 t
1

Since any point A(0,0,zo) on the edge can be identified

as the vertex of a cone with solid angle 
24 the point A can be

chosen as the origin of the spherical 
coordinates (r,O,w ). The

value of u at A is therefore related 
to u* by corollary 2,

u(0,0,zo,t) = -- u*(O,O,zo,t)
2 -

(4.7) (2w/p) Q(47C2t) -3/2 exp{-[p 2 + (z -z )2/(4C2t)
1 1 0

The spherical integral of u with A as the center is also related

to that of u* as follows 21

IT 7r TT

I (r,zo,t) = r 2 f sin 6de I dCu = r 2 f sin edO f d u*
S 0 0 0 0

or

I (r,zo,t) = Q(4C2t)-1/ 2 (r/r p){exp[-(n -n )2]
S 

1

(4.8) -.exp[-(n + n 2

where T2 r 2 (4C2t) , = r2/( C2t)

24
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and rp = [p + (zlz)] is the distance from the

point source P to A.

Explicit formulas are obtained for the solution along

the'edge in eq.(4.7) and for the integrals of the solution on

a constant z-plane, and a cylindrical surface with z-axis as

its axis and with radius p and on a spherical surface of radius

r centered at a point (0,0,z o ) on the edge in eqs.(4.5),(4.6)

and (4.8) respectively. The only missing information about the

solution is its dependence on the variable *. The success of

obtaining so many explicit results from the corollaries is due

to the special geometry of the domain, a wedge, and is, therefore,

not restricted to diffusion problem only.

Example 2. Temperature field in a solid bounded by two insulated

conical surfaces with a common vertex.

As shown in fig.4, the inner and the outer conical

surfaces are nonintersecting. Their solid angles are Q and

0 respectively with o > Q . With the boundary condition of

au/an = 0 on the two conical surfaces, theorem II and the

corollaries remain applicable with the solid angle of the domain

D equal to o - . Based on the reason stated in the first1

example, it suffices to consider only the simple case of a point

source of strength Q at a point P in D at the instant t = 0.

The solution u* in the whole space without the conical

boundaries is again given by eq.(4.4). The temperature u at

the common vertex A is again given by the corollary 2.
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u(Azt) = *(Azt)

4 i

S1 r2
r

4 " - 4C2t
(4.9) ( ) e

no - a (4C 2t )3/2

where r I I PAI is the distance from the point source to the1

common vertex A. The integral of the temperature over the

spherical surface Sr  in D with radius r and centered at A

is again given by the expression on the right side of eq.(4.8).

When the conical surfaces are of finite length 2
2

the domain D is bounded in addition by an insulated spherical

surface S with radius & . The associated solution u* should be
2 2

replaced by the solution in an insulated sphere of radius E
2

due to a point source at P at the instant t = 0. The value at the

vertex u(A,t) and the spherical mean can be related by Theorem I

to a spherically symmetric problem given in [15].

The axially symmetric temperature field between two

co-axial circular cones is investigated by Oberhettinger and

Dressler [16] Series solution is constructed for the isothermal

boundary condition; u = 0. For case of adiabatic boundary

condition, au/9n = 0, only a brief outline of the method is

presented. The explicit results in this example would be use-

ful to check the numerical results of their analysis.
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Example 3. Diffusion of pollutants in a moving medium.

To be more specific, the conical domain D will be an open

channel connecting two large reservoirs. The channel is assumed to

be of constant depth, h. The domain D is defined by

(4.10) El <  E < E*2 a/2 < i < a/2 and -h < = z < 0

For a constant area channel ( = x and n = y; a is the width of the

channel. For a divergence channel, E = r, and n = e; a is the diver-

gent angle of the channel.

The flow is assumed to be incompressible and the velocity field

can be represented as

(4.11) q = V (Ex/

where V is the velocity at the section E = EI; = 0 for a constant area

channel and X = 1 for a divergence channel.

The governing equation for the diffusion of a pollutant in the

channel is [15].

au V(El au -C2 AU C2f
(4.12) -t - a

The boundary condition on Sc i.e., on the wetted walls of the

channel and on the free surface is

(4.13) au = 0 ,
an

The boundary conditions at the upstream and downstream ends of

the channel will be

u = 0 at E = E, and E = E2
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because of the large sizes of reservoirs. The inhomogeneous term f

represents the source of pollutant in the channel. For unsteady prob-

lems an initial condition, say u = 0 at t = 0, shall be added.

If the pollutant is dumped at a point E09 no' o in D at a

rate Q(t), then f can be written as

(4.14) f = Q 6(E -E ) S(n - no) 6(z zo) /E

The mean solution u (E, t) obeys the equation

(4.15) 3UE) au au + 37 .~]CQ 6( _)/(EX
(4.15) - C2 _ 2

The boundary conditions are

(4.16) u = 0 at- = E, and (2

The mean solution u (E,t) can be obtained directly and is inde-

pedent of no and zo  of the point source. From u (E,t), u is obtained

immnediately and is the quantity of interest in this problem. In particular,

uE at El, and E2 represent the rate of the pollutant entering the upstream

and downstream reservoirs.

Explicit results will now be given for the steady problem to show

the difference between a constant area channel and a divergent channel.

The steady solution of eqs. (4.15, 4.16) for a constant area

channel (X = 0) is

28
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Qe-(o- -k - ( ° - )k -(E2 - o)k .. kX
-[ " e] [1 - e J/[1-e f

Atfor E 0oq
u ( e

-VR2 - E)k [-( - Ej)k / [1-e -kX
[.V1-e I [1-e

aV
for E2<E<Eo

where k = V/C2  and X = ,- . The percentage of the pollutant reaching

the upstream reservoir is

-kX
(4.17) aC2 Q (I) = e -o- ~1 )k 11-e -(2 - EO)k/ [1-e ]Q

-(Eo- EI)k
e as k+

The percentage decreases exponentially in the distance from the source of

the pollution to the upstream station of the channel.

For a divergent channel (X = 1, V > 0), the steady solution is

Re Re Re
(4.18) Q( ) o _ - 1() _ ) -1

Re

-- z [ ( ) - 1 H ( - q° )

where Re = VE,/C 2 . The percentage of the pollutant going to the upstream

reservoir is

Re Re Re

(4.19) Q ( /R )) Re- 1  = I- E( / 2)
e

As Re - =, the percentage decreases as the Re-th power of the ratio /o

When V < 0, the flow is reversed from E = E2 to E =  1 through

a convergent channels Equations (4.18) and (4.19) remain valid for V<0,

however, eq. (4.19) defines now the percentage of pollutant going to the
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downstream reservoirs and

-Re
(4.20) u' () a 1 - ) as - Re

Q i 2

The percentage going to the upstream reservoir can be computed from

a ui(F)/Q or can be seen from (4.20). It again decreases as the

(-Re)-th power of the ratio (Eo/E2) as -Re + * in contrast with the

exponential decay law in a constant area channel.
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5. The Wave Equation

The propagation of acoustic waves or that of a single

component of electro or magnetic waves is governed by the simple

wave equation

(5.1) Lu = Au - C-2 utt = f(x,y,z,t)

where C is the speed of propagation. The usual two initial

conditions are the prescription of u and ut at a given instant

say t = 0.

In diffraction problems, it is usually done to

define an incident wave u ix,y,z,t) and to designate t = 0 as

the instant the incident wave front hits the body. In other-

(i)
words, the support of u does not intersect the body for t < 0.

The solution u(x,y,z,t) for t > 0 D,i.e., in the domain exterior

to the body is a solution of .the wave equation, eq.(5.1) subjected

to the initial conditions of

(i)
(5.2) u(x,y,z,0)= u (x,y,z,0)

and
(i)

(5u3) (x,y,z,0) = u (x,y,z,0)(5.3) t t

and the boundary condition

(5.4) u = 0 on Sn C

where S is the surface of the body. When the body is a cone of
c

solid angle 0, its exterior angle 0 , which is 47T - Q, is the
c (i)

solid angle for the domain D. Since the incident wave u is a

solution the wave equation in the whole space without the cone
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for t > 0 with the same initial conditions of eqs.(5.2) and

(i)
(5.3), u can be identified as the associate solution u* in the

whole space D* and corollaries 1 and 2 yield

(i)
(545) If uds = u uds

S S *
r r

and
47T (i)

(5.6) u(o,o,o,t) = u (o.o,o,t)L[T -

with S* in D* Equation (5.6) is the result obtained previously,r

[11 by a different method.

If the resultant wave is written as the sum of the

incident wave and a secondary wave,which is the reflected and

the diffracted waves, i.e.,

(i)(5.7) u = u + w

eq.(5.5) becomes

(i)
f w dS= If u ds

(5.8) S S*-S
r r r

These equations can be summarized in the following statement.

Theorem III

When an incident wave is reflected and diffracted by a

cone of solid angle 0 after the instant t = 0, the spherical inte-

gral of the incident wave cut off by the cone is redistributed

exterior to the cone as the integral of the reflected and the

diffracted waves. The redistribution of the incident wave from

a spherical surface of angle 4f to that of 4W - 0 intensifies

the value at the vertex by the ratio 47/(47 - T ).
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If an instant (say t = 0) cannot be fouind such that

the incident wave is neither reflected nor diffracted by the

core, theoram" IIIcannot be applied since the initial data can-

not be stated in terms of the'incident wave alone. In other-

words, Theorem II cannot be employed to relate the solution u

in D, i.e., exterior to a conical body Dbsto u in the whole

space without the body. However, it still can be used in diffraction

problems to relate the solution u to a known solution u* in D* which

is exterior to another conical body DL with the same vertex as stated

ip the following theorem:

Theorem IV

If the support of the solution u* outside a conical body

Sdoes not intersect the conicalbody Db for for t O0 and the Our-

face of the cone D contains the part of the surface of D where

the incident wave is reflected or diffracted for t _ 0, then the

solution u in D , fulfills the following relationships

(5.9) u u* for t < 0,

(5.10) fI u dS = If u*dS , for all t
Sr  S*

r

and

(5.11) u(0,t) = ( 4 _ ) u*(0,t) , for all t

S~e

where S and S are the spherical surfaces outside the conical bodies
r r

De and D* respectively The spherical surfaces are centered

at point 0, the vertex, and the solid angles of the conical

bodies are Q and *t respectively.
The two solutions u and u* differ from each other for
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t>0 because that the reflection and diffraction will then take

place over different surfaces. However, u and u* have the same

initial data at t = 0, therefore, Theorem II is applicable and

eqs.(5.10) and (5.11) are valid for all t.

TheoremsIII and IV are special adaptations of Theorem II

for diffraction problems. Their applications are demonstrated in

the following three examples. The first example shows a direct

application of Theorem IV to a trihedral and the explicit formulas

become useful for -e more complicated problems in the next two

examples. The second and the third examples deal with bodies

which are composed of cones of finite length. These examples

illustrate how to apply the Theorems to each conical component

for a finite interval due to the finite speed of propagation.

Example 1. Diffraction by a trihedral.

Figure 5 shows an incident wave which is diffracted

all the time by one edge (OA) of a trihedral with solid angle

0. The primary wave u(P ill pass over the vertex or one of the

other two edges OB and OE at the instant t = 0. The given

primary wave u(P represents the incident and the diffraction waves

advancing over a dihedral of angle X formed by the two plane OAE

and OAB. The solution u exterior to the trihedral will differ

(p)from u (P)only for t > 0.

If the planes OAE and OAB are extended beyond the edges

OB and OE to form a wedge in place of the trihedral, u will be

the solution also for t > 0. Point 0 which lies on the edge of

the wedge can be considered as the vertex of a conical body of solid
*

angle 2). With u identified as u (p ) and .*as 2y, Theorem IV yields
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(5.12) u(0,t) - 4 - u (0,t)

and

(5.13) ff u dS = r 2 I sin 8 dO I d u(P)(r,e,4,t)
S 0 0r

where r is the distance to the vertex 0, Sr is the spherical sur-

face outside the trihedral, 8 = 0 is the edge OA and 0 = 0 is the

plane OAB.

Example 2. Diffraction of a plane pulse by a rectangular block

(a two dimensional problem)

As shows in Figure 6, a plane pulse of strength e hits

the first corner 0 of the block at the instant t = 0 at an angle

X with respect to the horizontal side OA. The pulse is reflected

by the two sides of the corner and the influence of the vertex is

confined by the circle of radius Ct. The solution outside the

circle and behind the reflected wave is 2e. The solution inside

the circle is a conical solution[173 in two variables, uc(x5,y),

with x = x/(Ct) and y = y/(Ct). Before the construction of the

conical sojution, the "spherical" integral and the value at the

vcrtex 0 will be related directly to the incident wave.

For the two dimensional problem, cylindrical coordinates,

p,O with the vertex 0 as the origin will be used. The "spherical"

integral will become circular integral of radius p. Theorem III,

that is, eqs. (5.5 and 5.6) yields the circular integral of the

solution u due to the diffraction by the first corner at 0

3sT/2 21T

I u (p,O,t) pde = u (p,e,t)pd6
0 1 0

E(2p) for p <Ct= {
(5.14) £E[2-2 cos- 1 (Ct/p)]P for p > Ct > 0
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and the value at the vertex 0,

2 E 4(5.15) u (0,t) - - - E t > 0
S3r /2 3

Equation (5.14) is valid only when the circle of radius p does

not receive the diffracted waves from the adjacent corners.

This condition creates an upper time limit for the validity of

eq.(5.14). It is

(5.16) Ct < L (1 + sin X) - p

For equation (5.15), the time limit is given by eq.(5.16) with

p = 0. For the convenience of explanation, the width L of the

block is assumed to be shorter than its height H and the incident

pulse arrives at the corner A(L,0) before at the corner B(0,H)

i.e., L sin X < H cos X is also assumed.

If the conical solution u (x,7) is constructed by the

method of 117J, it defines the solution u, for the domain exterior

to the first corner at 0. Theorem Ivcan be used to relate the

diffracted wave at the adjacent corner A, to u when t > L sin X/C.
1

For a finite duration, corner A can be considered as the vertex

of a wedge. In terms of the cylindrical coordinates p and 6
1 1

the domain D exterior to corner A is -1/2 < 0 < r and p > 0.
1 1

The associated domain will be the space above the line AO, and

its extension through A as shown by the dotted line in Fig.6,

i.e. 0 < e <-r and p > 0. For the associated domain D*, there
1 1

is no diffraction at the corner A, therefore, the associated

solution can be identified as u for t > L sin A/C. The circular
1

integral of the solution u exterior to the corner A is given2

by that of u,
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f .u (p ,O ,t)d6 f u (p ,O,t)d6
--T/2 1 1 1 0 1 1 1

for 2L + L sin X - p > Ct > L sin \. The ratio of the angles

of the domain D* and D at the vertex A is f/(37/2) = 2/3. The

value at the vertex A is

2 42 (2e) = e for L > Ct > L sin X
u(A,t)2 12 L

fU(- ,0) for 2L + Lsin X > Ct > L
3 Ct

These equations can also be obtained by applying the results of

example 1. It is clear that if the solution u2 after the

diffraction at corner B is constructed by the method in (18 3

Theorem IVwill be useful for the subsequent diffraction of u
2

at an adjacent corner.

Example 3. Diffraction of a plane pulse by a cube.

Figure 7 shows a plane pulse of strength e hitting the

first corner 0 of a cube at the instant t = 0. The edges OA,

OB and OE are chosen as the x -, x -, and x - axes respectively.
1 2 3

The directional cosines of the normal to the plane pulse are

n , n and n . They are all non-negative and the smallest one
1 2 3

is n . Before the arrival of the plane pulse at any other corner,
1

i.e., t < n L/C, the solution u (x.,t) will remain unchanged if
1 1 1

the cube is replaced by the three dimensional corner at 0 with solid

angle 0 = 4w/8 = r/2. Equations (5.5) and (5.6) yield the

spherical integral of u outside the corner,1

T T i)
ff u (x.,t)ds = I dO I u r sin 6 d
S 1 -

esr 27r for r < Ct

er[r + Ct] 27 for r > Ct > 0
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and for Ct < (1 + n )L - r and the value at the vertex 0
1

4___ 8
u (0,t) 4-2 - e for (1 + n )L > Ct > 014-7/2 7 1

The upper time limits are defined by the arrival of

the diffracted waves from an adjacent corner. Along the edges

and outside the domain of influence of the vertex i.e., r > Ct,

the value is same as that along the edge of a 900 wedge, i.e.,

u (x.,0,0,t) = (4/3)e for Ct/n. > x. > Ct,
1 1 1 1

i = 1,2,3.

To obtain the complete solution u (x,y,z,t) it is
1

necessary to apply the method ofE17] for conical solutions of

two variables outside the characteristic sphere r = Ct and the

method of [4] for the three dimension conical solutions inside

the sphere. After the determination of the solution u for
1

the diffraction by the corner 0, Theorem IV and in particular,

the results in example 1 can be applied to the solution of

diffraction of u by the adjacent corners.1

When t > n L/C, the wave front of u advances over the
1 1

edges AB' and AE' and the vertex A. A can be considered as the

vertex of a trihedral with solid angle 2 = f/2, and OA as the

edge of a dihedral with angle X = T/2. The results of example 1

i.e., eqs. (5.12) and (5.13) are applicable until the arrival of

diffracted waves from other corners. The result' are

(5.17) u (A,t) = 6/7 u (A,t)
°2 1

and
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(5.18) II (u - u )dS = 0
S r 2 1

where u is the solution after the diffraction of u by the
2 1

corner at A, S ,is the spherical surface outside the trihedralr

with radius r' to its vertex A and the extension of u outside
1

its domain Qf definition is equal to zero. Similarly, eqs. (5.12)

and (5.13) can be applied for any point on the edge AB' (or AE')

before the arrival of the diffracted waves from the vertex A or

B'.

The applicability of eqs. (5.12) and (5.13) to vertex

A to obtain eqs. (5.17) and (5.18) does not depend on the facts

that u is a conical solution with respect to 0 and that 0 and AI

are vertices of a cube. It is obvious that the results of example

1 can be applied to relate the solution u* of diffraction of a

wave by a vertex A of a polyhedron to the solution u of the

subsequent diffraction of u* by an adjacent vertex B of the poly-

hedron. If the polyhedron is convex, the solution u can be written

(d)as u* + ud) The extension of u* outside its domain of definition
(d)

equals to zero. There is a discontinuity in u* and also in u but

their sum is continuous. Theorem IV or Eqs. (5.17 and 18) yield

(d)
(5.19) ffII u ds = 0

Sr

and

(d)
u (B,t) = u(B,t) - u*(B,t)

2X -
(5.20) - u*(B,t)
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where X is the angle of the dihedral with edge AB and Q is the

solid angle of the polyhedron at the vertex B. Of course, eqs.

(5.19 and 5.20) will remain valid only before the arrival of

additional diffracted waves from the adjacent corners.
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6. The Reduced Wave Equation

For periodic solutions of wave equation v(x,y,z)e ,

the amplitude function v is governed by the reduced wave equation

(6.1) Av + k 2v = f in D

where k2 = c 2W2 .

If the domain D is bounded and in particular a truncated

cone (E2 < =) the governing equation for the spherical mean v(r)2

is an ordinary differential

(6.2) (7'r 2 ) + k2 2r f

There is no difficulty to obtain the spherical mean v(r) for

S< r < E and the value at the vertex of the cone when ( = 0.
1 - - 2 1

When the domain D is unbounded, there is the well-

known difficulty of what is the proper boundary condition at in-

finity. This difficulty does not appear for the solution of an

initial boundary value problem of the wave equation.

For the diffraction of a incident periodic wave with

amplitude vPi by a obstacle, the solution v can be represented in

the form

ci)
(6.3) v = + w

where w is the secondary wave, the diffracted and reflected waves.

When the obstacle is finite, the boundary condition at infinity

is the well known Sommerfeld radiation conditions L19 J

(6.4) w = 0(r - 1 ) and wr + i k w = o(r-1)

The conditions can be deduced by treating the periodic solution
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as limit of an aperiodic solution for example the principle of

limiting absorption or limiting amplitude [203.

If the obstacle is unbounded, say a half plane, a wedge

or a cone, and the incident wave i itself fulfills eq.(6.4),

(i)
e.g. i v is induced by a point source, or a source distribution of

bounded support, the radiation conditionsof eq.(6.4) for the

secondary wave remain valid (21 1.

If the incident wave itself does not fulfill the Sommer-

feld radiation conditions, for example, the incident waves are

plane waves or cylindrical waves, the secondary wave due to

an unbounded obstacle may not obey the Sommerfeld

conditions. These difficulties are mentioned in [22] and

suggestions are made to separate the part of w which fulfill

the Sommerfeld condition from the second part, which does not. Explicit

determinations of the second part are demonstrated (22] for a plane and

a half plane and can be done for a wedge. For a conical body with

arbitrary cross-section, the determination of the second part in w

is not obvious.
In the first subsection, the incident wave is assumed

to fulfill the Sommerfeld conditionsand so does the secondary

wave. The corollaries of Theorem II are applied to relate

the spherical mean of the resultant solution to that of the

incident wave and to show that their relationships are the same as

those of unsteady solutions of the wave equation. These relation-

ships for the unsteady solution@ will now b@ assumed to be valid for

the periodic solution including the case that the incident wave does

not fulfill the Sommerfeld conditions and yield the necessary condi-

tions for the solution at infinity in the second subsection.
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A. The incident wave fulfills the Sommerfeld conditions

Since vi)and w both fulfill the Sommerfeld conditions,

so does the resultant solution vin the domain D outside a conical body

of solid angle 0. Without the body, i.e. in the whole space D ,

then there is no secondary wave and the solution v is equal to

v and fulfills the same homogeneous boundary condition on r = 2

i.e. eq.(6.4), . Corollaries I-and II are therefore

applicable, and the results are:

(i)
(6.5) v dS = v dS

S S*
r r

and

47r Ci)
(6.6) v(0,0,0) - 4 (0,0,0)

where S is the spherical surface with radius r from the origin

located at the vertex of the conical body and Sr is the part of

the surface outside of the body. Equations (6.5) and (6.6) are

identical to the relationships for eq.(5.5) and (5.6). In terms

of the secondary waves w, eq.(6.5) becomes

(i)
(6.7) flas S V dS

S S -SS.r r

This is identical to eq.(5.8) and has the same physical meaning

stated in Theorem IV, i.e., the spherical integral of the secondary

wave outside the body recovers the part of the spherical integral

of the incident wave cut-off by the body.

B. The incident wave does not fulfill the Sommerfeld conditions

In this case, the proper boundary condition at infinity

for the solution v or the secondary wave w is unknown, therefore,
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the corollaries cannot be applied. However, if the limiting

principle is accepted also for the diffraction by an unbounded

body then the periodic solution veiwt can be considered as

the limiting solution (t--oo) of the wave equation with an incident

wav e which is periodic behind a wave front advancing towards the

cone at finite time (say t=0). Equation (5.8) or Theorem IV

which holds for all time should be valid also for the limiting

solution. By this argument, eq. (6.7) is reestablished,

(is
(6.8) ff w dS = If v ds

Sr  S*-S r

and also
and also

(i)
(6.9) ff wrdS If v r ds

S S*-S rr r r

They become now the necessary conditions for the secondary

wave w for any r including r =.

By looking at the Green's formula for the reduced

wave equation [ 2 ] the integral over the spherical surface of

large radius R is

-kr -kR

[ff vdS] f - f v ds]
S 4 r R SR r 47rR

R r=R R

The terms insidethe first square bracket is recognized as the

total strength of doublets on SR and that inside the second one

is that of sources on SR. Equations (6.8) and (6.9) can there-

fore be interpreted as the following necessary conditions:

The total strength of sources induced by the secondary

wave on the spherical surface of large radius R outside the conical

body recovers that induced by the incident wave on the part of the
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spherical surface cut off by the cone. The statement holds also

for doublets.
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